
Presented by
Reetanjali Panda

Lecturer,UCPES,Bam

1. Application Program: It is nothing but a program
that runs on your computer, under the operating
system of your computer.

2. Applets or Intelligent Program: These are mainly
used for internet applications. These programs
run on a web page and require Java enabled web
browser or Applet viewer. These are the Javabrowser or Applet viewer. These are the Java
programs that appear to be embedded in a web
document.

3. Servlets: It is a mini server side program similar
to an applet. It enables to extend the
functionality of web servers. It is particularly
used for producing dynamic web contents.

 Data types specify size and the type of values
that can be stored in an identifier.

 In java, data types are classified into two
catagories :

 Primitive Data Types :- These are also known as
standard data type or built in data type. The java
compiler contains detailed instructions on each
standard data type or built in data type. The java
compiler contains detailed instructions on each
legal operations supported by the data type. They
include integer, character, boolean, and float etc.

 Non-primitive Data Types :- These are also
known as derived data types or reference
datatypes which are built on primitive datatypes.
They include classes, arrays and interfaces.

 Primitive Data Types
 Primitive Data Types are predefined and available within the

Java language. Primitive values do not share state with other
primitive values.

 There are 8 primitive types: byte, short, int, long, char, float,
double, and boolean.double, and boolean.

Java Data Types
Data Type Default Value Default size

byte 0 1 byte

short 0 2 bytes

int 0 4 bytes

long 0L 8 bytes

float 0.0f 4 bytes

double 0.0d 8 bytes

boolean false 1 bit

char '\u0000' 2 bytes

 Integer data types

 This group includes byte, short, int, long datatypes
 byte : It is 8 bit integer data type. Value range from -

128 to 127. Default value is zero. example: byte
b=10;

 short : It is 16 bit integer data type. Value range from
-32768 to 32767. Default value is zero.

example: short s=11;example: short s=11;
 int : It is 32 bit integer data type. Value range from

-2147483648 to 2147483647. Default value is zero.
example: int i=10;

 long : It is 64 bit integer data type. Value range from
-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807. Default value zero.
example: long l=100012;

 Floating-Point Number
 This group includes float, double datatypes.
 float : It is 32 bit float data type. Default value 0.0f.

example: float ff=10.3f;
 double : It is 64 bit float data type. Default value 0.0d.

example: double db=11.123;

CharactersCharacters
 This group represent char, which represent symbols in a

character set, like letters and numbers.
 char : It is 16 bit unsigned unicode character. Range 0 to 65,535.

example: char c='a';

Boolean
 This group represent boolean, which is a special type for

representing true/false values. They are defined constant of the
language. example: boolean b=true;

 Type Casting
 Assigning a value of one type to a variable of

another type is known as Type Casting.
 Example :
 Int x = 10; Int x = 10;
 byte y = (byte)x;
 In Java, type casting is classified into two

types,
 Widening Casting(Implicit)
 Narrowing Casting(Explicitly done)

 Widening or Automatic type conversion: Automatic Type casting take
place when the two types are compatible. The target type is larger than
the source type.

Example :
public class Test
{

public static void main(String[] args)public static void main(String[] args)
{

int i = 100;
long l = i; //no explicit type casting required
float f = l; //no explicit type casting required
System.out.println("Int value "+i);
System.out.println("Long value "+l);
System.out.println("Float value "+f);

}
}

 Output :
Int value 100
Long value 100
Float value 100.0

Narrowing or Explicit type conversion: When y Narrowing or Explicit type conversion: When y
ou
are assigning a larger type value to a variable
of smaller type, then you need to perform ex
plicit type casting.

 Example :
public class Test
{

public static void main(String[] args)
{

double d = 100.04;
long l = (long)d; //explicit type casting required
int i = (int)l; //explicit type casting required
long l = (long)d; //explicit type casting required
int i = (int)l; //explicit type casting required

System.out.println("Double value "+d);
System.out.println("Long value "+l);

System.out.println("Int value "+i);

}
}

 Output :
Double value 100.04
Long value 100
Int value 100

class Demo
{ public static void main(String args[])
{ byte x;

int a = 270;
double b = 128.128;
System.out.println("int converted to byte");
x = (byte) a;

System.out.println("a and x " + a + " " + x); System.out.println("a and x " + a + " " + x);
System.out.println("double converted to int");
a = (int) b;
System.out.println("b and a " + b + " " + a);
System.out.println("double converted to byte");
x = (byte)b;
System.out.println("b and x " + b + " " + x);

}
}

 Output:
int converted to byte
a and x 270 14
double converted to int
b and a 128.128 128b and a 128.128 128
double converted to byte
b and x 128.128 -128

 A character set is a set of textual and graphic symbols,
each of which is mapped to a set of non-negative integers.
The first character set used in computing was US-ASCII. It
is limited in that it can represent only American English.
US-ASCII contains uppercase and lowercase latin
alphabets, numerals, punctuations, a set of control codes,
and a few miscellaneous symbols. But, Java uses the
UNICODE Character Set.UNICODE Character Set.

 Unicode defines a standardized, universal character set,
used for representing characters and symbols as integers.
Unlike ASCII, which uses 7 bits for each character, Unicode
uses 16 bits, which means that it can represent 65,536
unique characters. Unicode character set represent the
characters ‘\u0000’ to ‘\uffff’ in hexa decimal
representation. The \u indicate a Unicode value.

 Tokens are the Java program‘s elements
which are identified by the compiler. A token
is the smallest element of a program that is
meaningful to the compiler. Tokens
supported in Java includes; keywords,supported in Java includes; keywords,
identifiers, literals, punctuators, operators,
etc.

 Keywords are those reserved words that
convey a special meaning to the compiler.
These keywords have pre-defined functions.
These keywords can not be used as names
for a variable,constant,class or method.for a variable,constant,class or method.

 Literals are those data items whose value
does not change during the program
execution. They are also known as
constants.

 Java supports different types of literals
which are

 Java supports different types of literals
which are
◦ Integer literal
◦ Character literal
◦ Floating-point literal
◦ Boolean literal
◦ String literal

 These are the primary literals used in Java. They are
of three types-

1. decimal (base 10)
2. hexadecimal (base 16)
3. octal (base 8

(i)Decimal Interger Literals- Whose digits consists of
the numbers 0 to 9.

(ii)Hexadecimal Interger Literals-Whose digits
consists of the numbers 0 to 9 and letters A to F.

(iii) Octal Integer Literals- Whose digits consists of
the numbers 0 to 7 only.

 Some rules for integer literals are given below
◦ It must have at least one digit and can‘t use a decimal

digit.
◦ It must have a positive or negative sign, if the number

does appear without any sign, it is assumed to be a
positive number.

◦ Hexadecimal literals appear with a leading Ox (zero, x).
Octal literals appear with a leading 0 (zero) in front of its

◦ Hexadecimal literals appear with a leading Ox (zero, x).
Octal literals appear with a leading 0 (zero) in front of its
digits. While decimal literals appears as ordinary
numbers with no special notation.

 For example, an decimal literal for the number
10 is represented as 10 in decimal, OxA in
hexadecimal and 012 in octal.

 These literals represent a single unicode
character and appear within a pair of single
quotation marks. Like : ‘a’, ‘x’ etc.

 There are some character literals which are
not readily printable through a keyboard suchnot readily printable through a keyboard such
as backspace, tabs, etc. These type of
characters are represented by using escape
sequences (\).

 Floating-point numbers are like real numbers in mathematics. For
 example, 4.13179, -0.0001. Java has two kinds of floating-point

number: float and double. The default type when you write a floating
point literal is double. Float is of 32 bits, where as double is of 64 bits.

 A floating-point literal can be either of two data types float or double
type. Floating point constants default to double precision. We have to
add a suffix to the floating point literal as D, d, F or f (D or d for double
and F or f for float). There are two ways of representing floating point
constants.constants.

 1. Standard Decimal Notation: It consists of a whole number followed by
a decimal point and fractional component.

 Example: 0.375, 2.576
 2. Scientific notation or Exponent form: Syntax: Mantissa E Exponent
 It consists of two parts: Mantissa part which can either be decimal or

fractional and exponent part which is always a whole number
represented by E or e .

 Example : 0.173 E +123 , 341 e -7

There are two Boolean literals true and false.
True represents a true value and false
represents a false value.
Example: boolean flag;
flag= false; flag= false;
Literals true or false should not be

represented by the quotation marks around
it. Java compiler will take it as a string of
characters, if it is represented in quotation
marks.

 It is a sequence of characters between a pair
of double quotes. The characters may be
alphabets,digits,special characters or blank
space.

 Example: “1937” , “ welcome”, “Berhampur” Example: “1937” , “ welcome”, “Berhampur”

 An identifier is a name of fundamental building
blocks of a program such as class, object,
interface, method, variable etc.

 Some of the rules to define a Java identifier are

◦ Identifiers can contain alphabets,digits, underscore or
dollar sign character.dollar sign character.

◦ They must not begin with a digit.
◦ They can be of any length and contains upper-case as

well as lower- case letters.
◦ They cannot be a keyword, boolean literals or null

character.
 Identifiers should be meaningful, short enough

to be quickly and easily typed and long enough
to be descriptive and easily readable.

 Rules for Naming Identifiers
 Name of instance variables and public methods should start with

lowercase letter. For example, age,total, percentage.
 When multiple words are used in a name, the second and

subsequent words should start with an uppercase letter.
 For example, collegeTeam, totalMarks.
 Private and local variables use only lowercase letters together

with underscores.with underscores.
 For example, class_exam.
 All uppercase letters and underscores between words are used

for constant values.
 For example, S_MARKS, SALARY_INCR.
 All classes and interfaces start with a leading uppercase letter.
 For example, HelloJava MetroCity

 Variable in Java: Variables are symbolic names of
memory locations. They are used for storing
values used in programs. Every variable is
assigned data type which designates the type and
quantity of value it can hold. In many
programming languages including Java, before a
variable can be used, it has to be declared so thatvariable can be used, it has to be declared so that
its name is known and proper space in memory is
allocated.

 In order to use a variable in a program you to
need to perform two steps

 Variable Declaration
 Variable Initialization

 To declare a variable, you must specify the
data type & give the variable a unique name.
For Example:

 int x; double y;
 Here a variable x is created for storing an int Here a variable x is created for storing an int

(integer) value and a variable y is created for
storing a double (double- precision floating
point) value.

 To initialize a variable, you must assign it a
valid value. Variables are normally used with
the assignment operator (=), which assign
the value on the right to the variable on the
left. left.

 Example of other Valid Initializations are
 pi =3.14f; d =20.22d; a=’v’; You can

combine variable declaration and
initialization as follows:

 Example :
 int a=2,b=4,c=6; float pi=3.14f; double

d=20.22d; char a=’v’;

 There are certain rules for the naming of Java identifiers.
Valid Java identifier must be consistent with the following
rules.

An identifier cannot be a Java reserve word.
◦ An identifier must begin with an alphabetic letter,

underscore (_), or a dollar sign ($).
◦ If there are any characters subsequent to the first one,◦ If there are any characters subsequent to the first one,

those characters must be alphabetic letters, digits,
underscores (_), or dollar signs ($).

◦ Whitespace cannot be used in a valid identifier.
◦ An identifier name must be unique.
◦ An identifier must not be longer than 65,535 characters.
◦ Java is case sensitive , so upper case and lower case letters

are distinct.

 Also, there are certain styles that programmers widely use in
naming variables, classes and methods in Java. Here are some
of them.

◦ Use lowercase letter for the first character of variables’ and
methods’ names.

◦ Use uppercase letter for the first character of class names.
◦ Use meaningful names.◦ Use meaningful names.
◦ Compound words or short phrases are fine, but use uppercase

letter for the first character of the words subsequent to the first.
Do not use underscore to separate words.

◦ Use uppercase letter for all characters in a constant. Use
underscore to separate words.

◦ Apart from the mentioned cases, always start with a lowercase
letter.

◦ Use verbs for methods’ names followed by nouns.

 Here are some examples for good Java identifiers.

◦ Variables: height, speed, filename,
tempInCelcius, incomingMsg, textToShow.

◦ Constant: SOUND_SPEED, KM_PER_MILE, BLOCK_SIZE.
◦ Class names: ◦ Class names: Account, DictionaryItem, FileUtility,

Article.
◦ Method names: locate, sortItem,

findMinValue, checkForError.
Invalid variables: 47123, #phone, basic pay, if

 There are several values which never get changed. For
example, a day will always have 24 hours, the value of PI
(up to three decimal places) will always be 3.141. These
are fixed values and always remain constant. In context of
programming, it is convenient to represent these values in
the same way (declare them as constant). These are known
as symbolic constants or named constants which we can
refer by its name but its value remains constant throughrefer by its name but its value remains constant through
out the program.

 In Java, symbolic constants are declared by the use of final
keyword.Final is a reserved keyword and tells the compiler
that the value will remain unchanged.

 For example, int hours = 24;
 Here, we know this value will remain unchanged as a day

always has 24 hours so the final keyword can be used.
 final int hours = 24;

 By making variables final, the values of
variables can never be changed accidently.

 You have to declare them only once in a
program.program.

 If you want to change their value, you have
to change it only at one place (at the time of
declaration).

 In Java, there are three types of variables:
 Local Variables
 Instance Variables
 Static Variables

1) Local Variables 1) Local Variables
 Local Variables are variables that are

declared inside the body of a method.

 Local variables are declared in method
constructor or blocks. Local variables are
initialized when method or constructor block
start and will be destroyed once it ends. Access
modifiers are not used for local variable.

float getDiscount(int price)
{{
float discount;
discount=price*(20/100);
return discount;
}
Here discount is a local variable.

 2) Instance Variables
 Instance variables are variables that are

declared inside a class but outside any
method,constructor or block. Instance
variable are also variable of object commonlyvariable are also variable of object commonly
known as data members.

 They are Object specific and are known as
instance variables.

class Student
{
String name;
int age;
}}
 Here name and age are instance variable of

Student class.

 3) Static Variables
 Static Variables are class variables declared

with static keyword. These variables can be
accessed using the name of the class rather
than the name of the object. Static variables
are initialized only once at the start of theare initialized only once at the start of the
program execution and the same copy of the
static variables is accessible to all the objects.
These variables should be initialized first,
before the initialization of any instance
variables.

class Student
{
String name;
int age;
static int code=1101; static int code=1101;
}
 Here code is a static variable. Each object of

Student class will share the code property.

class Sample
{ static int a = 1; // static variable

int data = 99; // instance variable
void method()

{ {
int b = 90; //local variable

}
}

 Java provides a rich operator environment. Most of its operators
can be divided into the following categories:

 Increment/Decrement Operator
 Arithmetic Operator
 Relational Operator
 Logical Operator
 Bitwise Operator

Shift Operator Shift Operator
 Assignment Operator
 Conditional Operator
 Instance of Operator
 New Operator
 Member selection Operator

 Each operator performs a specific task it is designed for.

 Increment and Decrement operators
 Aside from the basic arithmetic operators, Java

also includes a unary increment operator(++)
and unary decrement operator (--). Increment
and decrement operators increase and decrease a
value stored in a number variable by 1.value stored in a number variable by 1.

 For example, the expression,
count = count + 1; //increment the value of
count by 1
is equivalent to
count++;

Operator Use Description

++ op++
Increments op by 1;
evaluates to the value of op
before it was incremented
(Post Increment Operator)

++ ++op
Increments op by 1;
evaluates to the value of op
after it was incremented(Pre after it was incremented(Pre
Increment Operator)

-- op--
Decrements op by 1;
evaluates to the value of op
before it was
decremented(Post Decrement
Operator)

-- --op
Decrements op by 1;
evaluates to the value of op
after it was decremented(Pre
Decrement Operator)

 When used before an operand, it causes the variable to be
incremented or decremented by 1, and then the new value
is used in the expression in which it appears. For example,

int i = 10, int j = 3; int k = 0;

k = ++j + i; //will result to k = 4+10 = 14k = ++j + i; //will result to k = 4+10 = 14
 When the increment and decrement operators are placed

after the operand, the old value of the variable will be used
in the expression where it appears. For example,

int i = 10, int j = 3; int k = 0;

k = j++ + i; //will result to k = 3+10 = 13

class OperatorExample{
public static void main(String args[])
{
int x=10;
System.out.println(x++);
System.out.println(++x);
System.out.println(x--);System.out.println(x--);
System.out.println(--x);
}}
Output:
10
12
12
10

class OperatorExample{
public static void main(String args[])
{
int a=10;
int b=10;
System.out.println(a++ + ++a);//10+12=22System.out.println(a++ + ++a);//10+12=22
System.out.println(b++ + b++);//10+11=21

}}
Output:
22
21

Operator Use Description

+ op1 + op2 Adds op1 and op2

* op1 * op2 Multiplies op1 by op2

/ op1 / op2 Divides op1 by op2

% op1 % op2 Computes the
remainder of dividing remainder of dividing
op1 by op2

- op1 - op2 Subtracts op2 from
op1

public class ArithmeticDemo
{
public static void main(String[] args)
{

//a few numbers
int i = 37;
int j = 42;
int i = 37;
int j = 42;

double x = 27.475;
double y = 7.22;

System.out.println("Variable values...");
System.out.println("i = " + i);
System.out.println("j = " + j);
System.out.println("x = " + x);
System.out.println("y = " + y); //adding

System.out.println("Adding...");
System.out.println(" i + j = " + (i + j));
System.out.println(" x + y = " + (x + y));

//subtracting numbers
System.out.println("Subtracting...");System.out.println("Subtracting...");
System.out.println(" i - j = " + (i - j));
System.out.println(" x - y = " + (x - y));

//multiplying numbers
System.out.println("Multiplying...");
System.out.println(" i * j = " + (i * j));
System.out.println(" x * y = " + (x * y));
//dividing numbers
System.out.println("Dividing..."); System.out.println("Dividing...");
System.out.println(" i / j = " + (i / j));
System.out.println(" x / y = " + (x / y));

}

//computing the remainder resulting from dividing

numbers

System.out.println("Computing the remainder...");
System.out.println(" i % j = " + (i % j)); System.out.println(" i % j = " + (i % j));
System.out.println(" x % y = " + (x % y));

//mixing types System.out.println("Mixing types...");
System.out.println(" j + y = " + (j + y));

System.out.println(" i * x = " + (i * x));

}

Here is the output of the program,

Variable values... i = 37
j = 42
x = 27.475
y = 7.22y = 7.22
Adding...
i + j = 79
x + y = 34.695
Subtracting... i - j = -5
x - y = 20.255

Multiplying...
i * j = 1554 x * y = 198.37
Dividing...
i / j = 0
x / y = 3.8054 Computing the remainder...x / y = 3.8054 Computing the remainder...
i % j = 37
x % y = 5.815
Mixing types...
j + y = 49.22 i * x = 1016.58

 Relational operators compare two values and
determines the relationship between those
values. The output of evaluation are the
boolean values true or false.

Operator Use Descrip
tion

> op1 > op2 op1 is greater than op2

>= op1 >= op2 op1 is greater than or
equal to op2

< op1 < op2 op1 is less than op2

<= op1 <= op2 op1 is less than or equal <= op1 <= op2 op1 is less than or equal
to op2

== op1 == op2 op1 and op2 are equal

!= op1 != op2 op1 and op2 are not
equal

public class RelationalDemo
{
public static void main(String[] args) {
//a few numbers
int i = 37;
int j = 42; int k = 42;
System.out.println("Variable values...");
System.out.println(" i = " + i); System.out.println(" i = " + i);
System.out.println(" j = " + j);
System.out.println(" k = " + k);
//greater than
System.out.println("Greater than...");
System.out.println(" i > j = " + (i > j)); //false
System.out.println(" j > i = " + (j > i)); //true
System.out.println(" k > j = " + (k > j)); //false

//greater than or equal to
System.out.println("Greater than or equal to...");
System.out.println(" i >= j = " + (i >= j)); //false
System.out.println(" j >= i = " + (j >= i)); //true
System.out.println(" k >= j = " + (k >= j)); //true

//less than
System.out.println("Less than...");System.out.println("Less than...");
System.out.println(" i < j = " + (i < j)); //true
System.out.println(" j < i = " + (j < i)); //false
System.out.println(" k < j = " + (k < j)); //false
//less than or equal to
System.out.println("Less than or equal to...");
System.out.println(" i <= j = " + (i <= j)); //true
System.out.println(" j <= i = " + (j <= i)); //false
System.out.println(" k <= j = " + (k <= j)); //true

//equal to
System.out.println("Equal to...");
System.out.println(" i == j = " + (i == j)); //false

System.out.println("k == j = " + (k == j)); //true

//not equal to//not equal to
System.out.println("Not equal to...");
System.out.println(" i != j = " + (i != j)); //true

System.out.println("k != j = " + (k != j)); //false

}
}

output from this program:

Variable values... i = 37
j = 42
k = 42
Greater than...

i> j = false
j > i = true j > i = true
k > j = false

Greater than or equal to...
i >= j = false

j>= i = true
k >= j = true

Less than...
i< j = true
j < i = false
k < j = false

Less than or equal to...
i <= j = true
j<= i = false
k <= j = true
Equal to...
i == j = falsei == j = false
k == j = true
Not equal to...
i != j = true
k != j = false

 Logical operators have one or two boolean operands
that yield a boolean result. There are three logical
operators: && (logical AND), || (logical OR),, and !
(logical NOT) while the four bitwise operators are &
(AND), | (inclusive OR), ^ (exclusive OR) and ~(NOT)
can be used to integer types like long,int,short,char
and byte as its operands. It can also be used with
assignment form such as &= ,|= , ^= etc.
and byte as its operands. It can also be used with
assignment form such as &= ,|= , ^= etc.

The basic expression for a logical operation is,

x1 op x2

where x1, x2 are the operands, and op is the operator.

Truth Table for && and & :

x1 x2 Resultx1 x2 Result
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

Given an expression,

exp1 && exp2

&& will evaluate the expression exp1, and&& will evaluate the expression exp1, and
immediately return a false value if exp1 is false.
If exp1 is false, the operator never evaluates
exp2 because the result of the operator will be
false regardless of the value of exp2. In contrast,
the & operator always evaluates both exp1 and
exp2 before returning an answer.

public class TestAND
{
public static void main(String[] args){
int i= 0;
int j = 10;
boolean test= false;boolean test= false;

//demonstrate &&
test = (i > 10) && (j++ > 9);
System.out.println(i);
System.out.println(j);
System.out.println(test);

//demonstrate &
test = (i > 10) & (j++ > 9);
System.out.println(i);
System.out.println(j);
System.out.println(test);
}
}
The output of the program is,

0
10
False
0
11
false

Note, that the j++ on the line containing the && operator is not evaluated since the
first expression (i>10) is already equal to false.

 The Truth Table for || and | is as follows:

x1 x2 Resultx1 x2 Result
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Given an expression,

exp1 || exp2

|| will evaluate the expression exp1, and immediately return a true
value is exp1 is true. If exp1 is true, the operator never evaluates
exp2 because the result of the operator will be true regardless of
the value of exp2. In contrast, the | operator always evaluatesthe value of exp2. In contrast, the | operator always evaluates
both exp1 and exp2 before returning an answer.

A Sample Program
public class TestOR
{
public static void main(String[] args){
int i= 0;
int j = 10;
boolean test= false;

//demonstrate ||
test = (i < 10) || (j++ > 9);
System.out.println(i);
System.out.println(j);
System.out.println(test);

//demonstrate |
test = (i < 10) | (j++ > 9);
System.out.println(i);
System.out.println(j);
System.out.println(test);
}
}

The output of the program is,

0
10
true
00
11
true

Note, that the j++ on the line containing the ||
operator is not evaluated since the first
expression (i<10) is already equal to true.

The Truth Table for ^ is as follows:

x1 x2 Result

TRUE TRUE FALSE

TRUE FALSE TRUE

The result of an exclusive OR operation is
TRUE, if and only if one operand is true and
the other is false. Note that both operands
must always be evaluated in order to
calculate the result of an exclusive OR.

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

public class TestXOR
{
public static void main(String[] args)
{

boolean val1 = true;
boolean val2 = true;
boolean val1 = true;
boolean val2 = true;
System.out.println(val1 ^ val2);

val1 = false;
val2 = true;
System.out.println(val1 ^ val2);

val1 = false;
val2 = false;
System.out.println(val1 ^ val2);
val1 = true;
val2 = false;val2 = false;
System.out.println(val1 ^ val2);
}
}

The output of the program is,
False
true
false
truetrue

The ! logical NOT/~ Bitwise NOT takes in one
argument, wherein that argument can be an
expression, variable or constant. The truth
table for !/~

x1 Result
TRUE FALSE
FALSE TRUE

public class TestNOT
{
public static void main(String[] args){

boolean val1 = true;
boolean val2 = false;
System.out.println(!val1);
System.out.println(!val2);
System.out.println(!val1);
System.out.println(!val2);
}
}
The output of the program is,

False
true

 The bitwise shift operators shifts the bit value. The left operand specifies
the value to be shifted and the right operand specifies the number of
positions that the bits in the value are to be shifted. Both operands have
the same precedence.

 Different types of shift operators
1.Left shift(<<) op1<<op2 shifts bits at op1 left by distance of op2
2.Right shift(>>) op1>>op2 shifts bits at op1 right by distance of op2
3. 1.Right shift with zero fill or unsigned right shift (>>>)

op1<<op2 shifts bits at op1 right by distance of op2 (unsigned or op1<<op2 shifts bits at op1 right by distance of op2 (unsigned or
zero fill)

 Example
a = 0001000
b= 2
a << b= 0100000 (8<<2 = 8*2^2=32)
a >> b= 0000010 (8>>2 = 8/2^2=2)

operator description example

= assigns values from right side
operands to left side operand

a=b

+= adds right operand to the left
operand and assign the result to left

a+=b is same as a=a+b

-= subtracts right operand from the left
operand and assign the result to left
operand

a-=b is same as a=a-b

*= mutiply left operand with the right
operand and assign the result to left
operand

a*=b is same as a=a*b

/= divides left operand with the right
operand and assign the result to left
operand

a/=b is same as a=a/b

%= calculate modulus using two
operands and assign the result to left
operand

a%=b is same as a=a%b

 The conditional operator ?: is a ternary operator.
This means that it takes in three arguments that
together form a conditional expression. The
structure of an expression using a conditional
operator is,

exp1?exp2:exp3

 wherein exp1 is a boolean expression whose
result must either be true or false. If exp1 is true,
exp2 is the value returned. If it is false, then
exp3 is returned.

public class ConditionalOperator
{
public static void main(String[] args){

String status = "";
int grade = 80;int grade = 80;

//get status of the student
status = (grade >= 60)?"Passed":"Fail";

//print status
System.out.println(status);
}
}

The output of this program will be,

Passed

 Only object reference variables can be used
with this operator. The objective of this
operator is to check if an object is an instance
of an exiting class or interface. The return
type is boolean. If object is of the specified
type ,then the instance of operator returnstype ,then the instance of operator returns
true otherwise it returns false. It is also
known as runtime operator.

Syntax:
(<object >) instance of(<interface/class>)
Example: rose instance of flower is true if the

object rose belongs to the class flower
otherwise false.

When we allocate memory to an object by creating an instance of a
class, we use the new() operator to allocate memory dynamically at
run time.

Case-1: Declare the object and then allocate memory
Syntax:
Classname objectname;
Objectname= new Classname(); //memory allocation
Example:
Flower rose;Flower rose;
rose=new Flower();

Case-2: Declare the object and allocate memory in a single step
Syntax:
Classname objectname= new Classname(); //memory allocation
Example:
Flower rose =new Flower();
Java has automatic garbage collector , so, unlike C++., there is no

delete operator in java to dynamically deallocate the memory .

The class consists of data members and
member methods. It can be accessed through
a member selection operator or dot operator.

Syntax
object.data memberobject.data member
object.member method
Example
Student s1;
s1.rollno;
s1.total();

 Unary Operator These are the operators
which work on single operands.

 For example, !, -, ++, —, (), (cast) operator,
Unary + and Unary – are some examples of
unary operators.
Binary Operators These are the mostly used Binary Operators These are the mostly used
operators. These operators work on two
operands. Binary operators include arithmetic
operators (+, *, /, % etc.).

 Ternary Operator Operator that works on
three operands is known as ternary operator.
Conditional operator (? :) is the example of
ternary operator.

 An expression is a construct made up of
variables, operators, and method invocations,
which are constructed according to the
syntax of the language, that evaluates to a
single value.single value.

int x = 3 + 2 * 6;
This expression is evaluated to 30 if the
addition operator is executed first. However,
it is 15 if the multiplication operator is
executed first.

 In fact, Java compiler has no problem with
such ambiguity. Order of the operators can
be determined using precedence and
association rules. Each operator is assigned a
precedence level. Operators with higher
precedence levels are executed before onesprecedence levels are executed before ones
with lower precedence levels. Associativity is
also assigned to operators with the same
precedence level. It indicates whether
operators to the left or to the right are to be
executed first, in the case of equal
precedence levels. Expressions in
parentheses () are executed first. In the case
of nested parentheses, the expression in the
innermost pair is executed first.

Evaluate the following expression by clearly state
the order of operations of all operators according
to the precedence and associativity rule.

Example-1 : 4*2+20/4
 There are three operators in the above

expression. They are *, + and /.The precedence
values of * and / are both 12, while the
expression. They are *, + and /.The precedence
values of * and / are both 12, while the
precedence value of + is just 11. Therefore, * and
/ must be operated prior to +. Since * and / have
the same precedence value, we need to look at
their associativity which we can see that the one
on the left have to be performed first.Therefore,
the order of operation from the first to the last is
*, / and then+. Consequently, the evaluation of
the expression value can take place in the steps
and the resulting value is 13.

4 * 2 + 20 / 4
=8 + 20 / 4
=8 + 5
=13
Example-2 : Evaluate the following expression.

2+2==6-2+0
Considering the precedence values of the four
2+2==6-2+0
Considering the precedence values of the four

operators appearing in the expression, which are +
(the leftmost one), ==, , and + (the rightmost one),
we can see that +, and have the same precedence
value of 11 (additive operators) which is higher than
the one of ==. Among the three additive operators,
we perform the operation from the left to the right
according to their associativity. The resulting value of
this expression can be evaluated to true.

2 + 2 == 6 - 2 + 0
4 == 6 - 2 + 0
4 == 4 + 0
4 == 4
TrueTrue
Example-3 : Evaluate the following
expression. Assume that the variable x has
already been properly declared as an int
variable.
(x=3)==(x=+1-2)&&true

 First, we perform the expression in the left pair
of parentheses. The variable x is assigned with
the int value 3 and this is also the resulting value
of the expression in this pair of parentheses.
Then, the expression x=+1-2 is evaluated due to
the fact that it is in the next pair of parentheses.the fact that it is in the next pair of parentheses.
In this expression, we have the assignment
operator = (with the precedence value of 1), the
unary positive + (with the precedence value of
13), and the binary operator (with the
precedence value of 13).Based on the comparison
of their precedence value, the unary positive is
performed first. This operator just indicates the
positiveness of its operand. Consequently, the
value of the right side of the assignment operator
is -1 and then it is

assigned to x. Therefore, the new value of x
is -1 which is the value of this pair of
parentheses too. The next operator to be
performed is the equality operator ==. It
compares the values of (x=3)and(x=+1-2),compares the values of (x=3)and(x=+1-2),
which have just been shown that they are not
equal.

 Therefore, the resulting value associated with
the action of this operator is the boolean
value false. Finally, the logical AND (&&) is
performed and the final result of the
expression in this example is the boolean
value false.

 Place the grouping operators () into the following
expression in order to explicitly determine the
order of operations of all operators appearing in
the expression. Evaluate the values of every
expression involved in steps according to the
inserted parentheses.inserted parentheses.

Example-4 :
-9.0+5.0*3.0–1.0/0.5 >= 5.0%2.0&&6.0+3.0-

9.0==0
 By considering the precedence values of all

operators appearing in the expression above, we
can place parentheses into the expression in
order to explicitly determine the order of
operation and then evaluate the values of each
part.

((((-9.0)+(5.0*3.0))–(1.0/0.5)) >=
(5.0%2.0))&&(((6.0+3.0)-9.0)==0)

((((-9.0)+15.0)- 2.0) >= 1.0)&&((9.0 -9.0)==0)
((6.0- 2.0) >= 1.0)&&((9.0 -9.0)==0)
(4.0 >= 1.0)&&(0 ==0)
(true)&&(true)(true)&&(true)
true.
Example-5 : Given an expression, re-write the
expression and place parentheses based on
operator precedence
6%2*5+4/2+88-10

Answer:
((((6%2)*5)+(4/2))+88)-10;

 A punctuator is a type of token that has syntactic and semantic
meaning to the compiler, but the exact meaning depends upon
the context where we use it.

 Punctuators are used for grouping and separating the numeric
and non- numeric data. Some of the Punctuators used in Java
are

1. ()
Parantheses are used to contain a list of parameters in

method definition, contains statements for condition etc.
2.{}2.{}

Used to define a code for method and classes.
3.[]

Brackets are used for declaring array types.
4.Comma (,)
Used for separating identifier in a variable declaration,

sometimes in for loop.
5. Period(.)

Used to separate package names from sub package,referring
methods or data members in a class such as dot operator.

THANK YOU

